コードはためになる。
機械学習をかじったことがある人にとっては、TensorFlowの内容がサクサク説明されており実用的。
ただ、ところどころ訳が下手なので機械学習に関する前知識がないと苦労する箇所があると思う。
内容紹介
新世代の数値計算ライブラリを操る! 線形回帰からCNN/RNNまで網羅的に実践 -- TensorFlowは、数値処理用のオープンソースライブラリ。AI分野を中心に活用が進んでいます。本書ではまず、変数/プレースホルダといったTensorFlowの基本や、オープンデータを扱う方法を説明。以降は、機械学習のさまざまな手法をレシピとして示していきます。具体的には次のとおりです。線形回帰、SVM、最近傍法、ニューラルネットワーク、自然言語処理、畳み込みニューラルネットワーク(CNN)、リカレントニューラルネットワーク(RNN)、運用環境のための手法、遺伝的アルゴリズム、k-means、常微分方程式などです。※本書は『TensorFlow Machine Learning Cookbook』の翻訳書です。 ※コードの検証にPython 3.5/3.6とTensorFlow 1.1/1.2を使用(各環境/各コードの動作を完全に保証するものではありません)。
内容(「BOOK」データベースより)
TensorFlowは、数値処理用のオープンソースライブラリ。機械学習や深層学習などAI分野を中心に活用が進んでいます。本書では、最初に、変数/プレースホルダといったTensorFlowの基本や、さまざまなオープンデータを扱う方法を説明。以降は、機械学習に関するさまざまな手法を具体的なレシピとして示していきます。線形回帰からCNN/RNNまで解説しつつ、運用環境向けの手法や連立常微分方程式も取り上げます。TensorFlowとPython3を使ったさまざまな手法について具体的に知りたい方に格好の一冊です。