¥ 7,744 + ¥ 257 関東への配送料
この書籍はよりお買い得なバージョンをご購入いただけます
Kindle版を選ぶと、¥ 2,005 (24%) お買い得にご購入いただけます。
¥ 5,739
Kindle版
¥ 7,744
ハードカバー価格

Kindle版を選ぶと、<span class="a-color-price">¥ 2,005 (24%)</span> お買い得にご購入いただけます。 iOS, Android, Mac & パソコンで使えるKindle無料アプリで今すぐ読む
  • 参考価格: ¥ 8,510
  • OFF: ¥ 766 (9%)
残り1点 ご注文はお早めに 在庫状況について
この商品は、SmallerWorldFuture が販売、発送します。 この出品商品にはコンビニ・ATM・ネットバンキング・電子マネー払いが利用できます。
¥ 7,744 + ¥ 257 関東への配送料
この商品をお持ちですか? マーケットプレイスに出品する
裏表紙を表示 表紙を表示
サンプルを聴く 再生中... 一時停止   Audible オーディオエディションのサンプルをお聴きいただいています。
3点すべてのイメージを見る

An Introduction to Statistical Learning: with Applications in R (Springer Texts in Statistics) (英語) ハードカバー – 2013/8/12


その他(3)の形式およびエディションを表示する 他のフォーマットおよびエディションを非表示にする
価格
新品 中古品
Kindle版
ハードカバー
¥ 7,744
¥ 7,744 ¥ 7,757
click to open popover

キャンペーンおよび追加情報


よく一緒に購入されている商品

  • An Introduction to Statistical Learning: with Applications in R (Springer Texts in Statistics)
  • +
  • The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition (Springer Series in Statistics)
  • +
  • Deep Learning (Adaptive Computation and Machine Learning)
総額: ¥25,669
選択された商品をまとめて購入

Kindle 端末は必要ありません。無料 Kindle アプリのいずれかをダウンロードすると、スマートフォン、タブレットPCで Kindle 本をお読みいただけます。

  • Apple
  • Android
  • Android

無料アプリを入手するには、Eメールアドレスを入力してください。

商品の説明

内容紹介

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform.

Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

レビュー

Poullis, Computing Reviews, September, 2014)

“The book provides a good introduction to R. The code for all the statistical methods introduced in the book is carefully explained. … the book will certainly be useful to many people (including me). I will surely use many examples, labs and datasets from this book in my own lectures.” (Pierre Alquier, Mathematical Reviews, July, 2014)

“The stated purpose of this book is to facilitate the transition of statistical learning to mainstream. … it adds information by including more detail and R code to some of the topics in Elements of Statistical Learning. … I am having a lot of fun playing with the code that goes with book. I am glad that this was written.” (Mary Anne, Cats and Dogs with Data, maryannedata.com, June, 2014)

“This book (ISL) is a great Master’s level introduction to statistical learning: statistics for complex datasets. … the homework problems in ISL are at a Master’s level for students who want to learn how to use statistical learning methods to analyze data. … ISL contains 12 very valuable R labs that show how to use many of the statistical learning methods with the R package ISLR … .” (David Olive, Technometrics, Vol. 56 (2), May, 2014)

“Written by four experts of the field, this book offers an excellent entry to statistical learning to a broad audience, including those without strong background in mathematics. … The end-of-chapter exercises make the book an ideal text for both classroom learning and self-study. … The book is suitable for anyone interested in using statistical learning tools to analyze data. It can be used as a textbook for advanced undergraduate and master’s students in statistics or related quantitative fields.” (Jianhua Z. Huang, Journal of Agricultural, Biological, and Environmental Statistics, Vol. 19, 2014)

“It aims to introduce modern statistical learning methods to students, researchers and practitioners who are primarily interested in analysing data and want to be confined only with the implementation of the statistical methodology and subsequent interpretation of the results. … the book also demonstrates how to apply these methods using various R packages by providing detailed worked examples using interesting real data applications.” (Klaus Nordhausen, International Statistical Review, Vol. 82 (1), 2014)

“The book is structured in ten chapters covering tools for modeling and mining of complex real life data sets. … The style is suitable for undergraduates and researchers … and the understanding of concepts is facilitated by the exercises, both practical and theoretical, which accompany every chapter.” (Irina Ioana Mohorianu, zbMATH, Vol. 1281, 2014) 

"The book excels in providing the theoretical and mathematical basis for machine learning, and now at long last, a practical view with the inclusion of R programming examples. It is the latter portion of the update that I’ve been waiting for as it directly applies to my work in data science. Give the new state of this book, I’d classify it as the authoritative text for any machine learning practitioner...This is one book you need to get if you’re serious about this growing field." (Daniel Gutierrez, Inside Big Data, inside-bigdata.com, October 2013)

商品の説明をすべて表示する

登録情報

  • ハードカバー: 426ページ
  • 出版社: Springer; 1版 (2013/8/12)
  • 言語: 英語
  • ISBN-10: 1461471370
  • ISBN-13: 978-1461471370
  • 発売日: 2013/8/12
  • 商品パッケージの寸法: 15.9 x 2.2 x 23.5 cm
  • おすすめ度: この商品の最初のレビューを書き込んでください。
  • Amazon 売れ筋ランキング: 洋書 - 15,309位 (洋書の売れ筋ランキングを見る)
  • さらに安い価格について知らせる
    この商品を出品する場合、出品者サポートを通じて更新を提案したいですか?

  • 目次を見る

カスタマーレビュー

まだカスタマーレビューはありません。
他のお客様にも意見を伝えましょう

Amazon.com で最も参考になったカスタマーレビュー

Amazon.com: 5つ星のうち4.7 182 件のカスタマーレビュー
I Teach Typing
5つ星のうち5.0wonderful but watch the movie
2014年2月14日 - (Amazon.com)
Amazonで購入
291人のお客様がこれが役に立ったと考えています.
Michael Tsiappoutas
5つ星のうち5.0Excellent Practical Introduction to Learning
2013年10月25日 - (Amazon.com)
Amazonで購入
147人のお客様がこれが役に立ったと考えています.
Shawn Berry
5つ星のうち5.0This is the easy book from Hastie, et al. on Statistical Learning (Machine Learning)
2017年12月16日 - (Amazon.com)
Amazonで購入
8人のお客様がこれが役に立ったと考えています.
同様の商品をご覧になりませんか? こちらのリンクで参照ください。artificial intelligence