¥ 7,898
通常配送無料 詳細
残り1点(入荷予定あり) 在庫状況について
この商品は、Amazon.co.jp が販売、発送します。 ギフトラッピングを利用できます。
Introduction to Machine L... がカートに入りました

この商品をお持ちですか? マーケットプレイスに出品する
裏表紙を表示 表紙を表示
サンプルを聴く 再生中... 一時停止   Audible オーディオエディションのサンプルをお聴きいただいています。

Introduction to Machine Learning (Adaptive Computation and Machine Learning series) (英語) ハードカバー – 2014/8/22

その他(2)の形式およびエディションを表示する 他のフォーマットおよびエディションを非表示にする
Amazon 価格
新品 中古品
¥ 7,898
¥ 7,898 ¥ 13,420
click to open popover


  • 本カテゴリの商品を2500円以上購入で買取金額500円UPキャンペーン対象商品です。商品出荷時に買取サービスでご利用いただけるクーポンをメールにてご案内させていただきます。 詳細はこちら (細則もこちらからご覧いただけます)
  • 【判型について】 洋書の主な判型については こちらをご確認ください。

  • 【買取サービス】 Amazonアカウントを使用して簡単お申し込み。売りたいと思った時に、宅配買取もしくは出張買取を選択してご利用いただけます。 今すぐチェック。


Kindle 端末は必要ありません。無料 Kindle アプリのいずれかをダウンロードすると、スマートフォン、タブレットPCで Kindle 本をお読みいただけます。

  • Apple
  • Android
  • Android




A substantially revised third edition of a comprehensive textbook that covers a broad range of topics not often included in introductory texts.

The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Many successful applications of machine learning exist already, including systems that analyze past sales data to predict customer behavior, optimize robot behavior so that a task can be completed using minimum resources, and extract knowledge from bioinformatics data. Introduction to Machine Learning is a comprehensive textbook on the subject, covering a broad array of topics not usually included in introductory machine learning texts. Subjects include supervised learning; Bayesian decision theory; parametric, semi-parametric, and nonparametric methods; multivariate analysis; hidden Markov models; reinforcement learning; kernel machines; graphical models; Bayesian estimation; and statistical testing.

Machine learning is rapidly becoming a skill that computer science students must master before graduation. The third edition of Introduction to Machine Learning reflects this shift, with added support for beginners, including selected solutions for exercises and additional example data sets (with code available online). Other substantial changes include discussions of outlier detection; ranking algorithms for perceptrons and support vector machines; matrix decomposition and spectral methods; distance estimation; new kernel algorithms; deep learning in multilayered perceptrons; and the nonparametric approach to Bayesian methods. All learning algorithms are explained so that students can easily move from the equations in the book to a computer program. The book can be used by both advanced undergraduates and graduate students. It will also be of interest to professionals who are concerned with the application of machine learning methods.


Ethem Alpaydin's Introduction to Machine Learning provides a nice blending of the topical coverage of machine learning (à la Tom Mitchell) with formal probabilistic foundations (à la Christopher Bishop). This newly updated version now introduces some of the most recent and important topics in machine learning (e.g., spectral methods, deep learning, and learning to rank) to students and researchers of this critically important and expanding field.

(John W. Sheppard, Professor of Computer Science, Montana State University)

I have used Introduction to Machine Learning for several years in my graduate Machine Learning course. The book provides an ideal balance of theory and practice, and with this third edition, extends coverage to many new state-of-the-art algorithms. I look forward to using this edition in my next Machine Learning course.

(Larry Holder, Professor of Electrical Engineering and Computer Science, Washington State University)

This volume is both a complete and accessible introduction to the machine learning world. This is a 'Swiss Army knife' book for this rapidly evolving subject. Although intended as an introduction, it will be useful not only for students but for any professional looking for a comprehensive book in this field. Newcomers will find clearly explained concepts and experts will find a source for new references and ideas.

(Hilario Gómez-Moreno, IEEE Senior Member, University of Alcalá, Spain)



  • ハードカバー: 640ページ
  • 出版社: The MIT Press; third版 (2014/8/22)
  • 言語: 英語
  • ISBN-10: 0262028182
  • ISBN-13: 978-0262028189
  • 発売日: 2014/8/22
  • 商品パッケージの寸法: 20.3 x 2.2 x 22.9 cm
  • おすすめ度: この商品の最初のレビューを書き込んでください。
  • Amazon 売れ筋ランキング: 洋書 - 81,674位 (洋書の売れ筋ランキングを見る)
  • さらに安い価格について知らせる



Amazon.com で最も参考になったカスタマーレビュー

Amazon.com: 5つ星のうち3.4 8 件のカスタマーレビュー
2017年4月23日 - (Amazon.com)
5つ星のうち1.0It is utterly horrible. Very simple concepts explained in such a way ...
2016年10月2日 - (Amazon.com)
5つ星のうち1.0Written to show off. Not to teach
2016年8月13日 - (Amazon.com)
5つ星のうち5.0He unpacks the major concepts of machine learning in a manner that makes it very easy to follow
2017年6月6日 - (Amazon.com)
5つ星のうち1.0Not a good book at all
2017年2月2日 - (Amazon.com)
同様の商品をご覧になりませんか? こちらのリンクで参照ください。3代目 j soul brothers三代目 soul brothersexileexile the second