¥ 9,042
通常配送無料 詳細
通常1~2か月以内に発送します。 在庫状況について
この商品は、Amazon.co.jp が販売、発送します。 ギフトラッピングを利用できます。
この商品をお持ちですか? マーケットプレイスに出品する
裏表紙を表示 表紙を表示
サンプルを聴く 再生中... 一時停止   Audible オーディオエディションのサンプルをお聴きいただいています。
2点すべてのイメージを見る

Exploiting the Power of Group Differences: Using Patterns to Solve Data Analysis Problems (Synthesis Lectures on Data Mining and Knowledge Discovery) (英語) ハードカバー – 2019/2/22


その他(2)の形式およびエディションを表示する 他のフォーマットおよびエディションを非表示にする
価格
新品 中古品
ハードカバー
¥ 9,042
¥ 9,042 ¥ 10,776

booksPMP

【2冊で最大4%、3冊以上で最大8%、10冊以上で最大10%】ポイント還元

2冊を購入する際クーポンコード「2BOOKS」を、3冊以上は「MATOME」を入力すると最大8~10%ポイント還元!今すぐチェック

click to open popover

キャンペーンおよび追加情報

Kindle 端末は必要ありません。無料 Kindle アプリのいずれかをダウンロードすると、スマートフォン、タブレットPCで Kindle 本をお読みいただけます。

  • iOSアプリのダウンロードはこちらをクリック
    Apple
  • Androidアプリのダウンロードはこちらをクリック
    Android
  • Amazonアプリストアへはこちらをクリック
    Android

無料アプリを入手するには、Eメールアドレスを入力してください。

kcpAppSendButton


無料で使えるAmazonオリジナルブックカバー
10種類のロゴ入りデザインから好みのデザインを印刷して取り付けよう。 詳しくはこちら。

商品の説明

内容紹介

This book presents pattern-based problem-solving methods for a variety of machine learning and data analysis problems. The methods are all based on techniques that exploit the power of group differences. They make use of group differences represented using emerging patterns (aka contrast patterns), which are patterns that match significantly different numbers of instances in different data groups. A large number of applications outside of the computing discipline are also included.

Emerging patterns (EPs) are useful in many ways. EPs can be used as features, as simple classifiers, as subpopulation signatures/characterizations, and as triggering conditions for alerts. EPs can be used in gene ranking for complex diseases since they capture multi-factor interactions. The length of EPs can be used to detect anomalies, outliers, and novelties. Emerging/contrast pattern based methods for clustering analysis and outlier detection do not need distance metrics, avoiding pitfalls of the latter in exploratory analysis of high dimensional data. EP-based classifiers can achieve good accuracy even when the training datasets are tiny, making them useful for exploratory compound selection in drug design. EPs can serve as opportunities in opportunity-focused boosting and are useful for constructing powerful conditional ensembles. EP-based methods often produce interpretable models and results. In general, EPs are useful for classification, clustering, outlier detection, gene ranking for complex diseases, prediction model analysis and improvement, and so on.

EPs are useful for many tasks because they represent group differences, which have extraordinary power. Moreover, EPs represent multi-factor interactions, whose effective handling is of vital importance and is a major challenge in many disciplines.

Based on the results presented in this book, one can clearly say that patterns are useful, especially when they are linked to issues of interest.

We believe that many effective ways to exploit group differences' power still remain to be discovered. Hopefully this book will inspire readers to discover such new ways, besides showing them existing ways, to solve various challenging problems.

著者について

Dr. Guozhu Dong is a professor of Computer Science and Engineering, and a member at the Knoesis Center of Excellence, at Wright State University. He received a Ph.D. in Computer Science from the University of Southern California and a B.S. in Mathematics from Shandong University. Before joining Wright State University, he was a faculty member at the University of Melbourne. His research interests span data mining, machine learning, databases, data science, bioinformatics, and artificial intelligence. He co-authored the book Sequence Data Mining; coedited two books, Contrast Data Mining and Feature Engineering, respectively; and authored the book Exploiting the Power of Group Differences. He is known for his pioneering work and sustained effort on emerging/contrast pattern mining and on the use of such patterns in problem solving. He has published hundreds of papers at major international conferences and in top-rate journals in the fields of data mining and databases. He received several best research paper awards at major data mining conferences. At Wright State University, he was recognized for Excellence in Research in his college. He has served on hundreds of program committees of international conferences, and he has chaired the program committees for several such conferences. He is a senior member of both ACM and IEEE.


登録情報

  • ハードカバー: 146ページ
  • 出版社: Morgan & Claypool (2019/2/22)
  • 言語: 英語
  • ISBN-10: 1681735040
  • ISBN-13: 978-1681735047
  • 発売日: 2019/2/22
  • 商品パッケージの寸法: 19.1 x 1 x 23.5 cm
  • おすすめ度: この商品の最初のレビューを書き込んでください。
  • さらに安い価格について知らせる
    この商品を出品する場合、出品者サポートを通じて更新を提案したいですか?

  • 目次を見る

まだカスタマーレビューはありません


この商品をレビュー

他のお客様にも意見を伝えましょう