¥ 10,272
この書籍はよりお買い得なバージョンをご購入いただけます
Kindle版を選ぶと、¥ 2,168 (21%) お買い得にご購入いただけます。
¥ 8,104
Kindle版
¥ 10,272
ペーパーバックの価格

Kindle版を選ぶと、<span class="a-color-price">¥ 2,168 (21%)</span> お買い得にご購入いただけます。 iOS, Android, Mac & パソコンで使えるKindle無料アプリで今すぐ読む
  • 参考価格: ¥ 10,351
  • OFF: ¥ 79 (1%)
通常配送無料 詳細
在庫あり。 在庫状況について
この商品は、Amazon.co.jp が販売、発送します。 ギフトラッピングを利用できます。
Deep Learning: Practical ... がカートに入りました
この商品をお持ちですか? マーケットプレイスに出品する
裏表紙を表示 表紙を表示
サンプルを聴く 再生中... 一時停止   Audible オーディオエディションのサンプルをお聴きいただいています。
2点すべてのイメージを見る

著者をフォローする

何か問題が発生しました。後で再度リクエストしてください。


Deep Learning: Practical Neural Networks with Java (英語) ペーパーバック – 2017/6/8


その他(2)の形式およびエディションを表示する 他のフォーマットおよびエディションを非表示にする
価格
新品 中古品
Kindle版
ペーパーバック
¥ 10,272
¥ 10,272 ¥ 16,610

booksPMP

【まとめ買いキャンペーン開催中】

本・雑誌を3冊以上を購入する際、クーポンコード「1212」を入力すると最大12%ポイント還元!今すぐチェック

click to open popover

キャンペーンおよび追加情報

Kindle 端末は必要ありません。無料 Kindle アプリのいずれかをダウンロードすると、スマートフォン、タブレットPCで Kindle 本をお読みいただけます。

  • Apple
  • Android
  • Android

無料アプリを入手するには、Eメールアドレスを入力してください。


商品の説明

内容紹介

Build and run intelligent applications by leveraging key Java machine learning libraries

About This Book

  • Develop a sound strategy to solve predictive modelling problems using the most popular machine learning Java libraries.
  • Explore a broad variety of data processing, machine learning, and natural language processing through diagrams, source code, and real-world applications
  • This step-by-step guide will help you solve real-world problems and links neural network theory to their application

Who This Book Is For

This course is intended for data scientists and Java developers who want to dive into the exciting world of deep learning. It will get you up and running quickly and provide you with the skills you need to successfully create, customize, and deploy machine learning applications in real life.

What You Will Learn

  • Get a practical deep dive into machine learning and deep learning algorithms
  • Explore neural networks using some of the most popular Deep Learning frameworks
  • Dive into Deep Belief Nets and Stacked Denoising Autoencoders algorithms
  • Apply machine learning to fraud, anomaly, and outlier detection
  • Experiment with deep learning concepts, algorithms, and the toolbox for deep learning
  • Select and split data sets into training, test, and validation, and explore validation strategies
  • Apply the code generated in practical examples, including weather forecasting and pattern recognition

In Detail

Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognitionStarting with an introduction to basic machine learning algorithms, this course takes you further into this vital world of stunning predictive insights and remarkable machine intelligence. This course helps you solve challenging problems in image processing, speech recognition, language modeling. You will discover how to detect anomalies and fraud, and ways to perform activity recognition, image recognition, and text. You will also work with examples such as weather forecasting, disease diagnosis, customer profiling, generalization, extreme machine learning and more. By the end of this course, you will have all the knowledge you need to perform deep learning on your system with varying complexity levels, to apply them to your daily work.

The course provides you with highly practical content explaining deep learning with Java, from the following Packt books:

  1. Java Deep Learning Essentials
  2. Machine Learning in Java
  3. Neural Network Programming with Java, Second Edition

Style and approach

This course aims to create a smooth learning path that will teach you how to effectively use deep learning with Java with other de facto components to get the most out of it. Through this comprehensive course, you’ll learn the basics of predictive modelling and progress to solve real-world problems and links neural network theory to their application

著者について

Yusuke Sugomori

Yusuke Sugomori is a creative technologist with a background in information engineering. When he was a graduate school student, he cofounded Gunosy with his colleagues, which uses machine learning and web-based data mining to determine individual users' respective interests and provides an optimized selection of daily news items based on those interests. This algorithm-based app has gained a lot ofattention since its release and now has more than 10 million users. The company has been listed on the Tokyo Stock Exchange since April 28, 2015. In 2013, Sugomori joined Dentsu, the largest advertising company in Japan based on nonconsolidated gross profit in 2014, where he carried out a wide variety of digital advertising, smartphone app development, and big data analysis. He was also featured as one of eight "new generation" creators by the Japanese magazine Web Designing. In April 2016, he joined a medical start-up as cofounder and CTO.


登録情報

  • ペーパーバック: 744ページ
  • 出版社: Packt Publishing (2017/6/14)
  • 言語: 英語
  • ISBN-10: 9781788470315
  • ISBN-13: 978-1788470315
  • ASIN: 1788470311
  • 発売日: 2017/6/8
  • 商品パッケージの寸法: 19 x 4.3 x 23.5 cm
  • おすすめ度: この商品の最初のレビューを書き込んでください。
  • Amazon 売れ筋ランキング: 洋書 - 242,092位 (洋書の売れ筋ランキングを見る)
  • さらに安い価格について知らせる
    この商品を出品する場合、出品者サポートを通じて更新を提案したいですか?


まだカスタマーレビューはありません


この商品をレビュー

他のお客様にも意見を伝えましょう