¥17,931
  • 参考価格: ¥18,495
  • OFF: ¥564 (3%)
  • ポイント: 179pt (1%)
  • (プライム会員になるとさらに359pt獲得) プライムに登録
通常配送無料 詳細
ただいま予約受付中です。 在庫状況について
この商品は、Amazon.co.jp が販売、発送します。
裏表紙を表示 表紙を表示
サンプルを聴く 再生中... 一時停止   Audible オーディオエディションのサンプルをお聴きいただいています。
この画像を表示

Deep Learning in Object Detection and Recognition (英語) ペーパーバック – 2021/1/27

5つ星のうち5.0 1個の評価

その他(3)の形式およびエディションを表示する 他のフォーマットおよびエディションを非表示にする
価格
新品 中古品
Kindle版 (電子書籍)
ペーパーバック
¥17,931
¥17,931
「予約商品の価格保証」対象商品。 詳細
この商品の特別キャンペーン プライム会員限定 最大5%ポイント還元中。 1 件
  • プライム会員限定 最大5%ポイント還元中。
    プライム会員限定最大5%ポイント還元 まとめて買うと最大15%ポイント還元。 特設ページはこちら 販売元: Amazon.co.jp。 詳細はこちら (細則もこちらからご覧いただけます)


ブックマイレージカード
click to open popover

キャンペーンおよび追加情報

  • プライム会員限定最大5%ポイント還元 まとめて買うと最大15%ポイント還元。 特設ページはこちら 販売元: Amazon.co.jp。 詳細はこちら (細則もこちらからご覧いただけます)
  • 「予約商品の価格保証」では、お客様が対象商品を予約注文した時点から発送手続きに入る時点、または発売日のいずれか早い時点までの期間中のAmazon.co.jp のサイト上で表示される最低販売価格が、お支払いいただく金額となります。予約商品の価格保証について詳しくはヘルプページをご覧ください。 詳細はこちら (細則もこちらからご覧いただけます)
  • 【判型について】 洋書の主な判型については こちらをご確認ください。

  • 【買取サービス】 Amazonアカウントを使用して簡単お申し込み。売りたいと思った時に、宅配買取もしくは出張買取を選択してご利用いただけます。 今すぐチェック。

Kindle 端末は必要ありません。無料 Kindle アプリのいずれかをダウンロードすると、スマートフォン、タブレットPCで Kindle 本をお読みいただけます。

  • iOSアプリのダウンロードはこちらをクリック
    Apple
  • Androidアプリのダウンロードはこちらをクリック
    Android
  • Amazonアプリストアへはこちらをクリック
    Android

無料アプリを入手するには、Eメールアドレスを入力してください。

kcpAppSendButton


無料で使えるブックカバー
好きなデザインを選んで取り付けよう! 詳しくはこちら。

商品の説明

内容紹介

This book discusses recent advances in object detection and recognition using deep learning methods, which have achieved great success in the field of computer vision and image processing. It provides a systematic and methodical overview of the latest developments in deep learning theory and its applications to computer vision, illustrating them using key topics, including object detection, face analysis, 3D object recognition, and image retrieval.

The book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners interested in deep learning, computer vision and beyond and can also be used as a reference book. The comprehensive comparison of various deep-learning applications helps readers with a basic understanding of machine learning and calculus grasp the theories and inspires applications in other computer vision tasks.

著者について

Xiaoyue Jiang received her Ph.D. degree in Computer Science and Technology from Northwestern Polytechnical University in 2006. From Xiaoyue Jiang received her Ph.D. degree in Computer Science and Technology from Northwestern Polytechnical University in 2006. From 2006 to 2012, she has worked in Vrije University of Brussels (Belgium), University of Birmingham (UK) and Queen’s University of Belfast (UK) as assistant and associated research fellow, respectively. She has worked as associated professor at Northwestern Polytechnical University since 2012. Her research interests includes computer vision, image processing and pattern recognition.  She has published more than 50 research papers and is currently senior fellow and secretary of Shaanxi Society of Image and Graphics.

Abdenour Hadid is an adjunct professor at the Center for Machine Vision and Signal Analysis at University of Oulu. He is the chairman of the Pattern Recognition Society of Finland. His research interests include biometrics and facial image analysis, local descriptors, machine learning and human-machine interaction. He has authored over 140< articles in different forums and coauthored a very popular Springer Book on Computer Vision Using Local Binary Patterns in 2011.

Yanwei Pang received his Ph.D. degree in Electronic Engineering from the University of Science and Technology of China (USTC) in 2004. Currently, he is a professor at the School of Electronic Information Engineering, Tianjin University, China. He is also the founding director of the Visual Pattern Analysis Laboratory of Tianjin University. His research interests include deep convolutional neural networks, pattern recognition, machine learning, computer vision and digital image processing. He has authored more than 100 scientific papers, 24 of which were published in IEEE Transactions.

Eric Granger earned his Ph.D. in EE from the Poly-technique Montréal in 2001, and worked as a defense scientist at DRDC-Ottawa (1999-2001), and in R&D with Mitel Networks (2001-04). He joined the École de Technologie Supérieure (Université du Québec), Montreal, in 2004, where he is presently full professor and director of LIVIA, a research laboratory on computer vision and artificial intelligence. His research focuses on adaptive pattern recognition, machine learning, computer vision and computational intelligence.

Xiaoyi Feng received her Ph.D. degree in Electronics and Information from Northwestern Polytechnical University in 2001. She is currently a professor and vice dean of the School of Electronics and Information, Northwestern Polytechnical University, and the vice director of the key laboratory of Ministry of Education “Aerospace electronics information perception and photoelectric control”. Her research interests include image processing, pattern recognition, computer vision, radar imaging, embedded system design and applications.  She is the executive director of Shaanxi Society of Image and Graphics, and senior member of the China Society of Electronics. 


登録情報

  • ペーパーバック: 224ページ
  • 出版社: Springer; 1st ed. 2019版 (2021/1/27)
  • 言語: 英語
  • ISBN-10: 9811506515
  • ISBN-13: 978-9811506512
  • 発売日: 2021/1/27
  • 商品の寸法: 15.5 x 23.5 cm
  • カスタマーレビュー: この商品の最初のレビューを書き込んでください。
  • さらに安い価格について知らせる

  • 目次を見る

まだカスタマーレビューはありません

星5つ (0%) 0%
星4つ (0%) 0%
星3つ (0%) 0%
星2つ (0%) 0%
星1つ (0%) 0%

この商品をレビュー

他のお客様にも意見を伝えましょう