お使いのスマホ、タブレット、PCで読めるKindle版(電子書籍)もあります。
この商品をお持ちですか? マーケットプレイスに出品する
裏表紙を表示 表紙を表示
サンプルを聴く 再生中... 一時停止   Audible オーディオエディションのサンプルをお聴きいただいています。

著者をフォローする

 全てをチェック
何か問題が発生しました。後で再度リクエストしてください。


Data Mining: Practical Machine Learning Tools and Techniques, Third Edition (The Morgan Kaufmann Series in Data Management Systems) (英語) ペーパーバック – 2011/1/20

5つ星のうち4.3 109個の評価

その他 の形式およびエディションを表示する 他の形式およびエディションを非表示にする
価格
新品 中古品
Kindle版 (電子書籍)
ペーパーバック
¥18,509 ¥826

この商品には新版があります:

click to open popover

キャンペーンおよび追加情報

商品の説明

レビュー

"...offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations."

"Co-author Witten is the author of other well-known books on data mining, and he and his co-authors of this book excel in statistics, computer science, and mathematics. Their in- depth backgrounds and insights are the strengths that have permitted them to avoid heavy mathematical derivations in explaining machine learning algorithms so they can help readers from different fields understand algorithms. I strongly recommend this book to all newcomers to data mining, especially to those who wish to understand the fundamentals of machine learning algorithms."--INFORMS Journal of Computing

"The third edition of this practical guide to machine learning and data mining is fully updated to account for technological advances since its previous printing in 2005 and is now even more closely aligned with the use of the Weka open source machine learning, data mining and data modeling application. Beginning with an introduction to data mining, the volume explores basic inputs, outputs and algorithms, the implementation of machine learning schemes and in-depth exploration of the many uses of the Weka data analysis software. Numerous illustration, tables and equations are included throughout and additional resources are available through a companion website. Witten, Frank and Hall are academics with the department of computer science at the University of Waikato, New Zealand, the home of the Weka software project."--Book News, Reference & Research

"I would recommend this book to anyone who is getting started in either data mining or machine learning and wants to learn how the fundamental algorithms work. I liked that the book slowly teaches you the different algorithms piece by piece and that there are also a lot of examples. I plan on taking a machine learning course this upcoming fall semester and feel that the book gave me great insight that the course will be based on mathematics more than I had originally expected. My favorite part of the book was the last chapter where it explains how you can solve different practical data mining scenarios using the different algorithms. If there were more chapters like the last one, the book would have been perfect. This book might not be that useful if you do not plan on using the Weka software or if you are already familiar with the various machine learning algorithms. Overall, Data Mining: Practical Machine Learning Tools and Techniques is a great book to learn about the core concepts of data mining and the Weka software suite."--ACM SIGSOFT Software Engineering Notes

"This book is a must-read for every aspiring data mining analyst. Its many examples and the technical background it imparts would be a unique and welcome addition to the bookshelf of any graduate or advanced undergraduate student. The book is written for both academic and application-oriented readers, and I strongly recommend it to any reader working in the area of machine learning and data mining."--Computing Reviews.com

著者について

Ian H. Witten is a professor of computer science at the University of Waikato in New Zealand. He directs the New Zealand Digital Library research project. His research interests include information retrieval, machine learning, text compression, and programming by demonstration. He received an MA in Mathematics from Cambridge University, England; an MSc in Computer Science from the University of Calgary, Canada; and a PhD in Electrical Engineering from Essex University, England. He is a fellow of the ACM and of the Royal Society of New Zealand. He has published widely on digital libraries, machine learning, text compression, hypertext, speech synthesis and signal processing, and computer typography. He has written several books, the latest being Managing Gigabytes (1999) and Data Mining (2000), both from Morgan Kaufmann.

Eibe Frank lives in New Zealand with his Samoan spouse and two lovely boys, but originally hails from Germany, where he received his first degree in computer science from the University of Karlsruhe. He moved to New Zealand to pursue his Ph.D. in machine learning under the supervision of Ian H. Witten, and joined the Department of Computer Science at the University of Waikato as a lecturer on completion of his studies. He is now an associate professor at the same institution. As an early adopter of the Java programming language, he laid the groundwork for the Weka software described in this book. He has contributed a number of publications on machine learning and data mining to the literature and has refereed for many conferences and journals in these areas.>

Mark A. Hall was born in England but moved to New Zealand with his parents as a young boy. He now lives with his wife and four young children in a small town situated within an hour's drive of the University of Waikato. He holds a bachelor's degree in computing and mathematical sciences and a Ph.D. in computer science, both from the University of Waikato. Throughout his time at Waikato, as a student and lecturer in computer science and more recently as a software developer and data mining consultant for Pentaho, an open-source business intelligence software company, Mark has been a core contributor to the Weka software described in this book. He has published a number of articles on machine learning and data mining and has refereed for conferences and journals in these areas.

登録情報

  • 出版社 : Morgan Kaufmann; 第3版 (2011/1/20)
  • 発売日 : 2011/1/20
  • 言語 : 英語
  • ペーパーバック : 664ページ
  • ISBN-10 : 0123748569
  • ISBN-13 : 978-0123748560
  • 寸法 : 19.05 x 3.81 x 23.5 cm
  • カスタマーレビュー:
    5つ星のうち4.3 109個の評価

カスタマーレビュー

5つ星のうち4.3
星5つ中の4.3
109 件のグローバル評価
評価はどのように計算されますか?

この商品をレビュー

他のお客様にも意見を伝えましょう

上位レビュー、対象国: 日本

2013年10月7日に日本でレビュー済み
Amazonで購入
1人のお客様がこれが役に立ったと考えています
違反を報告
2018年11月8日に日本でレビュー済み
Amazonで購入

他の国からのトップレビュー

Moo
5つ星のうち4.0 This is a very well written and easy to read book on the topic of Data Mining
2015年3月18日に英国でレビュー済み
Amazonで購入
1人のお客様がこれが役に立ったと考えています
違反を報告
Amazon Customer
5つ星のうち5.0 Five Stars
2017年2月25日に英国でレビュー済み
Amazonで購入
nats
5つ星のうち5.0 Good buy!
2014年8月23日に英国でレビュー済み
Amazonで購入
Trading Central
5つ星のうち5.0 Excellent Practitioners Guide to Data Mining
2013年11月26日にカナダでレビュー済み
Amazonで購入
meruz
5つ星のうち5.0 molto pratico e comprensibile
2013年1月9日にイタリアでレビュー済み
Amazonで購入
4人のお客様がこれが役に立ったと考えています
違反を報告