中古品
¥ 3,249
+ ¥ 300 配送料
中古品: 良い | 詳細
コンディション: 中古品: 良い
コメント: May have some markings and writings.
この商品をお持ちですか? マーケットプレイスに出品する
裏表紙を表示 表紙を表示
サンプルを聴く 再生中... 一時停止   Audible オーディオエディションのサンプルをお聴きいただいています。
3点すべてのイメージを見る

Data Mining: Practical Machine Learning Tools and Techniques, Third Edition (The Morgan Kaufmann Series in Data Management Systems) (英語) ペーパーバック – 2011/1/6

5つ星のうち 5.0 1 件のカスタマーレビュー

その他(2)の形式およびエディションを表示する 他のフォーマットおよびエディションを非表示にする
価格
新品 中古品
Kindle版
ペーパーバック
¥ 21,636 ¥ 3,249
click to open popover

キャンペーンおよび追加情報

Kindle 端末は必要ありません。無料 Kindle アプリのいずれかをダウンロードすると、スマートフォン、タブレットPCで Kindle 本をお読みいただけます。

  • Apple
  • Android
  • Android

無料アプリを入手するには、Eメールアドレスを入力してください。


商品の説明

内容紹介

Data Mining: Practical Machine Learning Tools and Techniques, Third Edition, offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining.

Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research.

The book is targeted at information systems practitioners, programmers, consultants, developers, information technology managers, specification writers, data analysts, data modelers, database R&D professionals, data warehouse engineers, data mining professionals. The book will also be useful for professors and students of upper-level undergraduate and graduate-level data mining and machine learning courses who want to incorporate data mining as part of their data management knowledge base and expertise.

  • Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects
  • Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods
  • Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks―in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization

レビュー

"...offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations."

"Co-author Witten is the author of other well-known books on data mining, and he and his co-authors of this book excel in statistics, computer science, and mathematics. Their in- depth backgrounds and insights are the strengths that have permitted them to avoid heavy mathematical derivations in explaining machine learning algorithms so they can help readers from different fields understand algorithms. I strongly recommend this book to all newcomers to data mining, especially to those who wish to understand the fundamentals of machine learning algorithms."--INFORMS Journal of Computing

"The third edition of this practical guide to machine learning and data mining is fully updated to account for technological advances since its previous printing in 2005 and is now even more closely aligned with the use of the Weka open source machine learning, data mining and data modeling application. Beginning with an introduction to data mining, the volume explores basic inputs, outputs and algorithms, the implementation of machine learning schemes and in-depth exploration of the many uses of the Weka data analysis software. Numerous illustration, tables and equations are included throughout and additional resources are available through a companion website. Witten, Frank and Hall are academics with the department of computer science at the University of Waikato, New Zealand, the home of the Weka software project."--Book News, Reference & Research

"I would recommend this book to anyone who is getting started in either data mining or machine learning and wants to learn how the fundamental algorithms work. I liked that the book slowly teaches you the different algorithms piece by piece and that there are also a lot of examples. I plan on taking a machine learning course this upcoming fall semester and feel that the book gave me great insight that the course will be based on mathematics more than I had originally expected. My favorite part of the book was the last chapter where it explains how you can solve different practical data mining scenarios using the different algorithms. If there were more chapters like the last one, the book would have been perfect. This book might not be that useful if you do not plan on using the Weka software or if you are already familiar with the various machine learning algorithms. Overall, Data Mining: Practical Machine Learning Tools and Techniques is a great book to learn about the core concepts of data mining and the Weka software suite."--ACM SIGSOFT Software Engineering Notes

"This book is a must-read for every aspiring data mining analyst. Its many examples and the technical background it imparts would be a unique and welcome addition to the bookshelf of any graduate or advanced undergraduate student. The book is written for both academic and application-oriented readers, and I strongly recommend it to any reader working in the area of machine learning and data mining."--Computing Reviews.com

商品の説明をすべて表示する

登録情報

  • ペーパーバック: 664ページ
  • 出版社: Morgan Kaufmann; 3版 (2011/1/20)
  • 言語: 英語
  • ISBN-10: 0123748569
  • ISBN-13: 978-0123748560
  • 発売日: 2011/1/6
  • 商品パッケージの寸法: 19 x 3.8 x 23.5 cm
  • おすすめ度: 5つ星のうち 5.0 1 件のカスタマーレビュー
  • Amazon 売れ筋ランキング: 洋書 - 72,348位 (洋書の売れ筋ランキングを見る)
  • さらに安い価格について知らせる
    この商品を出品する場合、出品者サポートを通じて更新を提案したいですか?

  • 目次を見る


カスタマーレビュー

他のお客様にも意見を伝えましょう
すべてのカスタマーレビューを見る(1)

トップカスタマーレビュー

2013年10月7日
形式: Kindle版Amazonで購入
1人のお客様がこれが役に立ったと考えています
コメント 違反を報告

Amazon.com で最も参考になったカスタマーレビュー

Amazon.com: 5つ星のうち4.2 77 件のカスタマーレビュー
Andrew
5つ星のうち4.0Good for overview and intuition
2014年6月23日 - (Amazon.com)
Amazonで購入
4人のお客様がこれが役に立ったと考えています.
Sefa
5つ星のうち4.0good textbook to start machine learning / data mining
2011年12月14日 - (Amazon.com)
Amazonで購入
7人のお客様がこれが役に立ったと考えています.
RJ
5つ星のうち5.0Great book
2014年9月30日 - (Amazon.com)
Amazonで購入
2人のお客様がこれが役に立ったと考えています.
Jochen Albrecht
5つ星のうち5.0You will need some time but it is worth the investment
2011年12月12日 - (Amazon.com)
Amazonで購入
6人のお客様がこれが役に立ったと考えています.
AAA
5つ星のうち3.0More like a manual of Weka software
2014年4月10日 - (Amazon.com)
Amazonで購入
1人のお客様がこれが役に立ったと考えています.