¥ 11,872
通常配送無料 詳細
2点在庫あり。(入荷予定あり) 在庫状況について
この商品は、Amazon.co.jp が販売、発送します。
ギフトラッピングを利用できます。
数量:1
Multilinear Subspace Lear... がカートに入りました
この商品をお持ちですか? マーケットプレイスに出品する
裏表紙を表示 表紙を表示
サンプルを聴く 再生中... 一時停止   Audible オーディオエディションのサンプルをお聴きいただいています。
2点すべてのイメージを見る

Multilinear Subspace Learning: Dimensionality Reduction of Multidimensional Data (Chapman & Hall/Crc Machine Learning & Pattern Recognition) (英語) ハードカバー – 2013/12/16


すべての 2 フォーマットおよびエディションを表示する 他のフォーマットおよびエディションを非表示にする
Amazon 価格 新品 中古品
Kindle版
"もう一度試してください。"
ハードカバー
"もう一度試してください。"
¥ 11,872
¥ 9,598


Amazon Student会員なら、この商品は+10%Amazonポイント還元(Amazonマーケットプレイスでのご注文は対象外)。
無料体験でもれなくポイント2,000円分プレゼントキャンペーン実施中。



キャンペーンおよび追加情報


商品の説明

内容紹介

Due to advances in sensor, storage, and networking technologies, data is being generated on a daily basis at an ever-increasing pace in a wide range of applications, including cloud computing, mobile Internet, and medical imaging. This large multidimensional data requires more efficient dimensionality reduction schemes than the traditional techniques. Addressing this need, multilinear subspace learning (MSL) reduces the dimensionality of big data directly from its natural multidimensional representation, a tensor.

Multilinear Subspace Learning: Dimensionality Reduction of Multidimensional Data gives a comprehensive introduction to both theoretical and practical aspects of MSL for the dimensionality reduction of multidimensional data based on tensors. It covers the fundamentals, algorithms, and applications of MSL.

Emphasizing essential concepts and system-level perspectives, the authors provide a foundation for solving many of today’s most interesting and challenging problems in big multidimensional data processing. They trace the history of MSL, detail recent advances, and explore future developments and emerging applications.

The book follows a unifying MSL framework formulation to systematically derive representative MSL algorithms. It describes various applications of the algorithms, along with their pseudocode. Implementation tips help practitioners in further development, evaluation, and application. The book also provides researchers with useful theoretical information on big multidimensional data in machine learning and pattern recognition. MATLAB® source code, data, and other materials are available at www.comp.hkbu.edu.hk/~haiping/MSL.html

レビュー

"…this book is built to be read as a rich and yet accessible introduction… artfully structured for a specialized audience of new researchers and bleeding-edge practitioners. …The treatment builds an overarching framework and provides an analytical reader with a well-expressed taxonomy on the foundations of historical developments and similarity in content and goals. Thus, packaged, current research is endowed with instant meaning and purpose, the derivation of which would initially elude a newcomer to this complex and articulated branch of machine learning."
—Computing Reviews, November 2014

"Experimentally inclined readers will probably like this book … . Practitioners will appreciate that the presentation of the subject matter is goal oriented … The structure that this book builds can allow a neophyte to avoid much of the initial confusion and wasted effort necessary to classify unfamiliar work and distinguish between what may be useful or not to one’s intents and interests. … an exquisitely enriched literature review that is almost good enough to use as an auxiliary graduate textbook … a rich yet accessible introduction …"
Computing Reviews, October 2014


登録情報


この本のなか見!検索より (詳細はこちら
この本のサンプルページを閲覧する
おもて表紙 | 著作権 | 目次 | 抜粋 | 索引 | 裏表紙
この本の中身を閲覧する:

カスタマーレビュー

まだカスタマーレビューはありません。
星5つ
星4つ
星3つ
星2つ
星1つ


フィードバック