Androidアプリストア Halloween Cloud Drive Photos 2016_schedulebook Amazon MasterCard nav_flyout_videogame Vogueタイアップ特集 Fire Fire HD 8 Fire HD 10 Fire TV stick Amazon Fire TV Fire TV stick 新米ストア 医薬品ストア hk コーヒーストア Kindle Amazon MP3 自転車・自転車用品ストア
¥ 11,858
  • 参考価格: ¥ 11,859
  • OFF: ¥ 1
通常配送無料 詳細
1点在庫あり。(入荷予定あり) 在庫状況について
この商品は、 が販売、発送します。 ギフトラッピングを利用できます。
Multilinear Subspace Lear... がカートに入りました

¥ 3,390
この商品をお持ちですか? マーケットプレイスに出品する
裏表紙を表示 表紙を表示
サンプルを聴く 再生中... 一時停止   Audible オーディオエディションのサンプルをお聴きいただいています。

Multilinear Subspace Learning: Dimensionality Reduction of Multidimensional Data (Chapman & Hall/Crc Machine Learning & Pattern Recognition) (英語) ハードカバー – 2013/12/16

すべての 2 フォーマットおよびエディションを表示する 他のフォーマットおよびエディションを非表示にする
Amazon 価格
新品 中古品
¥ 11,858
¥ 10,811


Amazon Student会員なら、この商品は+10%Amazonポイント還元(Amazonマーケットプレイスでのご注文は対象外)。無料体験でもれなくポイント2,000円分プレゼントキャンペーン実施中。


Kindle 端末は必要ありません。無料 Kindle アプリのいずれかをダウンロードすると、スマートフォン、タブレットPCで Kindle 本をお読みいただけます。

  • Apple
  • Android
  • Android




Due to advances in sensor, storage, and networking technologies, data is being generated on a daily basis at an ever-increasing pace in a wide range of applications, including cloud computing, mobile Internet, and medical imaging. This large multidimensional data requires more efficient dimensionality reduction schemes than the traditional techniques. Addressing this need, multilinear subspace learning (MSL) reduces the dimensionality of big data directly from its natural multidimensional representation, a tensor.

Multilinear Subspace Learning: Dimensionality Reduction of Multidimensional Data gives a comprehensive introduction to both theoretical and practical aspects of MSL for the dimensionality reduction of multidimensional data based on tensors. It covers the fundamentals, algorithms, and applications of MSL.

Emphasizing essential concepts and system-level perspectives, the authors provide a foundation for solving many of today’s most interesting and challenging problems in big multidimensional data processing. They trace the history of MSL, detail recent advances, and explore future developments and emerging applications.

The book follows a unifying MSL framework formulation to systematically derive representative MSL algorithms. It describes various applications of the algorithms, along with their pseudocode. Implementation tips help practitioners in further development, evaluation, and application. The book also provides researchers with useful theoretical information on big multidimensional data in machine learning and pattern recognition. MATLAB® source code, data, and other materials are available at


"…this book is built to be read as a rich and yet accessible introduction… artfully structured for a specialized audience of new researchers and bleeding-edge practitioners. …The treatment builds an overarching framework and provides an analytical reader with a well-expressed taxonomy on the foundations of historical developments and similarity in content and goals. Thus, packaged, current research is endowed with instant meaning and purpose, the derivation of which would initially elude a newcomer to this complex and articulated branch of machine learning."
―Computing Reviews, November 2014

"Experimentally inclined readers will probably like this book … . Practitioners will appreciate that the presentation of the subject matter is goal oriented … The structure that this book builds can allow a neophyte to avoid much of the initial confusion and wasted effort necessary to classify unfamiliar work and distinguish between what may be useful or not to one’s intents and interests. … an exquisitely enriched literature review that is almost good enough to use as an auxiliary graduate textbook … a rich yet accessible introduction …"
Computing Reviews, October 2014



おもて表紙 | 著作権 | 目次 | 抜粋 | 索引 | 裏表紙